Abstract

We study the competition of magneto-dipole, anisotropy and exchange interactions in composite three-dimensional multiferroics. Using Monte Carlo simulations we show that magneto-dipole interaction does not suppress the ferromagnetic state caused by the interaction of the ferroelectric matrix and magnetic subsystem. However, the presence of the magneto-dipole interaction influences the order–disorder transition: depending on the strength of magneto-dipole interaction the transition from the ferromagnetic to the superparamagnetic state is accompanied either by the creation of vortices or domains of opposite magnetization. An unusual temperature hysteresis loop occurs in composite multiferroics due to non-monotonic behavior of exchange interaction versus temperature. The origin of this hysteresis is related to the presence of stable magnetic domains which are robust against thermal fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.