Abstract

The population dynamics of six introduced Bradyrhizobium japonicum strains were measured over three growing seasons in a Wisconsin soil with a low incidence of indigenous B. japonicum (10 cells/gm). Four antibiotic-resistant members of the 123 serocluster (which were either spectinomycin resistant or streptomycin resistant), USDA 110, and USDA 138 were inoculated using liquid inoculum, at a rate of 1 × 108 cells per 2.5-cm row, on two soybean cultivars in 1985. Nodule occupants were identified using an enzyme-linked immunosorbent assay (ELISA), fluorescent antibodies, and antibiotic-resistant mutants. In the first growing season, 100% of the nodules were formed by the introduced strains. The nodules from the uninoculated plots were occupied by an indigenous 110 serogroup. In the second and the third season at the same site (without further inoculation), a high percentage (> 60%) of the nodules from all the plots were nodulated by the 123 serocluster (either alone or as mixed infections). However, < 25% of the nodules in the 123-inoculated plots and < 9% in the other plots were formed by any of the antibiotic-marked 123 inoculum strains introduced in 1985. The main conclusions are (i) that it is possible to successfully introduce inoculum strains in soils where the indigenous Bradyrhizobium population is low and to obtain 100% nodule occupancy in the first growing season, and (ii) that successful inoculation in one year in soils with a low incidence of Bradyrhizobium does not ensure that the introduced inoculum strains will form nodules in subsequent years. Key words: Bradyrhizobium japonicum, indigenous bradyrhizobia, interstrain competition, field trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call