Abstract
Veratridine, an alkaloid isolated from the rhizome of V. album, binds and slows the inactivation of the brain sodium channels. The synthetic pentapeptide KIFMK causes a voltage- and use-dependent open-channel block of the RIIA (rat brain type IIA) sodium channel (Eaholtz, Scheuer & Catterall, 1994). Our studies on the RIIA sodium channel expressed in CHO cells reveal that the fraction of veratridine modified sodium channels decreases linearly with increasing KIFMK concentration. However, the time constant for dissociation of veratridine from the channel remains unchanged in the presence of a high concentration of KIFMK, as opposed to that in the presence of QX314 where the dissociation appears to be more complex. These data are consistent with mutually exclusive binding of the open channel blocking peptide and veratridine to the brain sodium channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.