Abstract

The effect of Gd doping on the structure and magnetic properties of PrCo3 compound was systematically studied, and a large zero-field cooling exchange bias effect at room temperature was observed. The results show that Pr1-xGdxCo3 (x = 0.0–1.0) series ribbons samples retains the rhombohedral structure of PuNi3 type. The addition of Gd element linearly reduce the lattice constant. Large coercivity strengthening and zero-field cooling exchange bias effect were stable below Curie temperature. At 10 K, the abnormal minimum saturation magnetization MS occurs at the critical point xc = 0.6, which corresponds to the maximum critical field, and the pinning effect is the strongest. At the same time, the maximum critical field is accompanied by the strongest exchange bias field, up to 14.92 kOe, showing a large unidirectional anisotropy. The coercivity HC is also improved by pinning effect, reaching a maximum of 23.17 kOe at the critical point xh = 0.5. Due to the influence of HEB, the actual coercivity HC1 was as high as 36.23 kOe. The mechanism of these phenomena was explained specifically in this paper. This work provides a novel idea for the development of permanent magnet materials and exchange bias materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.