Abstract

THz absorption spectra have been recorded for the weakly bound molecular complexes of H2O with C2H4 and C2H2 embedded in cryogenic neon matrices at 2.8 K. The observation and assignment of a large-amplitude acceptor OH librational mode of the C2H2-H2O complex at 145.5 cm-1 confirms an intermolecular CH⋯O hydrogen-bonded configuration of C2v symmetry with the H2O subunit acting as the hydrogen bond acceptor. The observation and assignment of two large-amplitude donor OH librational modes of the C2H4-H2O complex at 255.0 and 187.5 cm-1, respectively, confirms an intermolecular OH⋯π hydrogen-bonded configuration with the H2O subunit acting as the hydrogen bond donor to the π-cloud of C2H4. A (semi)-empirical value for the change of vibrational zero-point energy of 4.0-4.1 kJ mol-1 is proposed and the combination with quantum chemical calculations at the CCSD(T)-F12b/aug-cc-pVQZ level provides a reliable estimate of 7.1 ± 0.3 kJ mol-1 for the dissociation energy D0 of the C2H4-H2O complex. In addition, tentative assignments for the two strongly infrared active OH librational modes of the ternary C2H4-HOH-C2H4 complex having H2O as a doubly OH⋯π hydrogen bond donor are proposed at 213.6 and 222.3 cm-1. The present findings demonstrate that the relative stability of the weak hydrogen bond motifs is not entirely rooted in differences of electronic energy but also to a large extent by differences in the vibrational zero-point energy contributions arising from the class of large-amplitude intermolecular modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.