Abstract
We study the effect of competition between short-term synaptic depression and facilitation on the dynamic properties of attractor neural networks, using Monte Carlo simulation and a mean-field analysis. Depending on the balance of depression, facilitation, and the underlying noise, the network displays different behaviors, including associative memory and switching of activity between different attractors. We conclude that synaptic facilitation enhances the attractor instability in a way that (1) intensifies the system adaptability to external stimuli, which is in agreement with experiments, and (2) favors the retrieval of information with less error during short time intervals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.