Abstract

The temperature- and solvent-dependence of photoinduced electron-transfer reactions in a porphyrin-based donor-bridge-acceptor (DBA) system is studied by fluorescence and transient absorption spectroscopy. Two competing processes occur: sequential and direct superexchange-mediated electron transfer. In a weakly polar solvent (2-methyltetrahydrofuran), only direct electron transfer from the excited donor to the appended acceptor is observed, and this process has weak temperature dependence. In polar solvents (butyronitrile and dimethylformamide), both processes are observed and the sequential electron transfer shows strong temperature dependence. In systems where both electron transfer processes are observed, the long-range superexchange-mediated process is more than two times faster than the sequential process, even though the donor-acceptor distance is significantly larger in the former case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.