Abstract

We perform Ramsey interferometry on an ultracold ^{87}Rb ensemble confined in an optical dipole trap. We use a π pulse set at the middle of the interferometer to restore the coherence of the spin ensemble by canceling out phase inhomogeneities and creating a spin echo in the contrast. However, for high atomic densities, we observe the opposite behavior: the π pulse accelerates the dephasing of the spin ensemble leading to a faster contrast decay of the interferometer. We understand this phenomenon as a competition between the spin-echo technique and an exchange-interaction driven spin self-rephasing mechanism based on the identical spin rotation effect. Our experimental data are well reproduced by a numerical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.