Abstract

While plankton are often characterized by metabolism as either phototrophic primary producers or heterotrophic consumers, many actually combine photosynthesis and phagotrophy within a single cell. These “mixotrophic” plankton, which play an important biogeochemical role in marine food webs, exhibit diverse metabolic strategies with varied contributions from photosynthesis and phagotrophy. Mixotrophs co-exist with specialist phototrophs and heterotrophs, competing for shared resources; yet we do not know how this competition alters a mixotroph’s metabolic strategy or impacts biogeochemistry. We constructed a mathematical model to simulate the dynamics of a planktonic community which consists of mixotrophs and their specialist phototrophic competitor, phytoplankton. Our simulation demonstrates how the presence of competing phytoplankton causes metabolic character displacement, shifting mixotrophs to a more heterotrophic niche. We find that the displacement is affected by various environmental and physiological factors. For example, this displacement effect is temperature dependent, suggesting a link between community-level competitive mechanisms and global climate change. The proposed model therefore may be used to develop a more comprehensive analysis of the competition between constitutive mixotrophs and specialist phototrophs or heterotrophs. Our model also provides a mathematical framework for predicting constitutive mixotroph survival in the context of global warming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.