Abstract

Evidence for competition between Li+ and Na+ for binding sites of human unsealed and cytoskeleton-depleted human red blood cell (csdRBC) membranes was obtained from the effect of added Li+ upon the 23Na double quantum filtered (DQF) and triple quantum filtered (TQF) NMR signals of Na+-containing red blood cell (RBC) membrane suspensions. We found that, at low ionic strength, the observed quenching effect of Li+ on the 23Na TQF and DQF signal intensity probed Li+/Na+ competition for isotropic binding sites only. Membrane cytoskeleton depletion significantly decreased the isotropic signal intensity, strongly affecting the binding of Na+ to isotropic membrane sites, but had no effect on Li+/Na+ competition for those sites. Through the observed 23Na DQF NMR spectra, which allow probing of both isotropic and anisotropic Na+ motion, we found anisotropic membrane binding sites for Na+ when the total ionic strength was higher than 40 mM. This is a consequence of ionic strength effects on the conformation of the cytoskeleton, in particular on the dimer–tetramer equilibrium of spectrin. The determinant involvement of the cytoskeleton in the anisotropy of Na+ motion at the membrane surface was demonstrated by the isotropy of the DQF spectra of csdRBC membranes even at high ionic strength. Li+ addition initially quenched the isotropic signal the most, indicating preferential Li+/Na+ competition for the isotropic membrane sites. High ionic strength also increased the intensity of the anisotropic signal, due to its effect on the restructuring of the membrane cytoskeleton. Further Li+ addition competed with Na+ for those sites, quenching the anisotropic signal.7Li T1 relaxation data for Li+-containing suspensions of unsealed and csdRBC membranes, in the absence and presence of Na+ at low ionic strength, showed that cytoskeleton depletion does not affect the affinity of Na+ for the RBC membrane, but increases the affinity of Li+ by 50%. This clearly indicates that cytoskeleton depletion favors Li+ relative to Na+ binding, and thus Li+/Na+ competition for its isotropic sites. Thus, this relaxation technique proves to be very sensitive to alkali metal binding to the membrane, detecting a more pronounced steric hindrance effect of the cytoskeleton network to binding of the larger hydrated Li+ ion to the membrane phosphate groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call