Abstract

In addition to the choices of metal atoms/molecular linkers and surfaces, several crucial parameters, including surface temperature, molecular stoichiometric ratio, electrical stimulation, concentration, and solvent effect for liquid/solid interfaces, have been demonstrated to play key roles in the formation of on-surface self-assembled supramolecular architectures. Moreover, self-assembled structural transformations frequently occur in response to a delicate control over those parameters, which, in most cases, involve either conversions from relatively weak interactions to stronger ones (e.g., hydrogen bonds to coordination bonds) or transformations between the comparable interactions (e.g., different coordination binding modes or hydrogen bonding configurations). However, intermolecular bond conversions from relatively strong coordination bonds to weak hydrogen bonds were rarely reported. Moreover, to our knowledge, a reversible conversion between hydrogen bonds and coordination bonds has not been demonstrated before. Herein, we have demonstrated a facile strategy for the regulation of stepwise intermolecular bond conversions from the metal-organic coordination bond (Cu-N) to the weak hydrogen bond (CH···N) by increasing the surface molecular coverage. From the DFT calculations we quantify that the loss in intermolecular interaction energy is compensated by the increased molecular adsorption energy at higher molecular coverage. Moreover, we achieved a reversible conversion from the weak hydrogen bond to the coordination bond by decreasing the surface molecular coverage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.