Abstract

We have performed ultrafast pump-probe experiments on a GaAs-AlAs microcavity with a resonance near 1300 nm in the "original" telecom band. We concentrate on ultimate-fast optical switching of the cavity resonance that is measured as a function of pump-pulse energy. We observe that at low pump-pulse energies the switching of the cavity resonance is governed by the instantaneous electronic Kerr effect and is achieved within 300 fs. At high pump-pulse energies the index change induced by free carriers generated in the GaAs start to compete with the electronic Kerr effect and reduce the resonance frequency shift. We have developed an analytic model which predicts this competition in agreement with the experimental data. Our model includes a new term in the intensity-dependent refractive index that considers the effect of the probe pulse intensity, which is resonantly enhanced by the cavity. We calculate the effect of the resonantly enhanced probe light on the refractive index change induced by the electronic Kerr effect for cavities with different quality factors. By exploiting the linear regime where only the electronic Kerr effect is observed, we manage to retrieve the nondegenerate third order nonlinear susceptibility for GaAs from the cavity resonance shift as a function of pump-pulse energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.