Abstract
Direct measurements of the lifetimes of He(79)Br(2) and Ne(79)Br(2) B-state vibrational levels 10 < or = nu' < or = 20 have been performed using time-resolved optical pump-probe spectroscopy. The values do not obey the energy gap law for direct vibrational predissociation. For both molecules, the dissociation rate for nu'=11 is much faster than for nu'=12, and the nu'=13 rate is also faster than is consistent with the energy gap law. We attribute this unexpected behavior to an electronic predissociation channel. Based on Franck-Condon factors between the Br(2) B-state vibrational wave functions and the possible Br-Br product wave functions, we surmise that either the Br(2) (3)Pi(g)(1(g)) or (2(g)) state is responsible for the electronic predissociation. To our knowledge, this is the first time electronic predissociation and direct Deltanu=-1 vibrational predissociation have been observed to be in competition for a wide range of vibrational levels. As such, this problem deserves a detailed theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.