Abstract

Considering diffusion near a solid surface and simplifying the shape of concentration profile in diffusion-dominated layer allowed Nernst and Brunner to propose their famous equation for calculating the solute diffusion flux. Intensive (overlimiting) currents generate electroconvection (EC), which is a recently discovered interfacial phenomenon produced by the action of an external electric field on the electric space charge formed near an ion-selective interface. EC microscale vortices effectively mix the depleted solution layer that allows the reduction of diffusion transport limitations. Enhancement of ion transport by EC is important in membrane separation, nano-microfluidics, analytical chemistry, electrode kinetics and some other fields. This paper presents a review of the actual understanding of the transport mechanisms in intensive current regimes, where the role of diffusion declines in the profit of EC. We analyse recent publications devoted to explore the properties of different zones of the diffusion layer. Visualization of concentration profile and fluid current lines are considered as well as mathematical modelling of the overlimiting transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call