Abstract

Polyploidy resulting from whole genome duplication has contributed to the adaptive evolution of many plant species. However, the conditions necessary for successful polyploid evolution and subsequent establishment and persistence in sympatry with diploid progenitors are often quite limited. One condition thought to be necessary for establishment is a substantial competitive superiority of the polyploid. We conducted a pairwise competition experiment using diploid and tetraploid cytotypes of Centaurea stoebe L. to determine whether (1) tetraploids have greater competitive ability than diploids, (2) cytotypes from mixed-cytotype populations have more balanced competitive abilities than single-cytotype populations, and (3) competitive abilities change along a longitudinal gradient. Across sampling localities, tetraploids did not produce greater aboveground biomass than diploids but suffered from greater intracytotypic competition. Tetraploids allocated greater biomass belowground than diploids, regardless of competition treatment, and had greater performance for traits associated with long-term persistence (bolted more frequently and produced more accessory rosettes). Competitive ability of tetraploids did not differ between single- and mixed-cytotype populations but varied along a longitudinal gradient. Tetraploids were stronger intercytotypic competitors in Western Europe (Switzerland and Germany) than in Eastern Europe (Hungary and Slovakia), which indicates that cytotype coexistence may be more likely in Eastern Europe, the proposed origin of tetraploids, than in Western Europe. Our study addresses the importance of examining competitive interactions between cytotypes across their distributional range, as competitive interactions were not consistent across sampling localities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call