Abstract

The widespread African clawed frog (Xenopus laevis) occurs in sympatry with the IUCN Endangered Cape platanna (Xenopus gilli) throughout its entire range in the south-western Cape, South Africa. In order to investigate aspects of the interspecific competition between populations of X. laevis and X. gilli, an assessment of their niche differentiation was conducted through a comprehensive study on food composition and trophic niche structure at two study sites: the Cape of Good Hope (CoGH) and Kleinmond. A total of 399 stomach contents of X. laevis (n = 183) and X. gilli (n = 216) were obtained together with samples of available prey to determine food preferences using the Electivity index (E*), the Simpson’s index of diversity (1 − D), the Shannon index (H′), and the Pianka index (Ojk). Xenopus gilli diet was more diverse than X. laevis, particularly in Kleimond where the Shannon index was nearly double. Both species were found to consume large amounts of tadpoles belonging to different amphibian species, including congeners, with an overall higher incidence of anurophagy than previously recorded. However, X. laevis also feeds on adult X. gilli, thus representing a direct threat for the latter. While trophic niche overlap was 0.5 for the CoGH, it was almost 1 in Kleinmond, suggesting both species utilise highly congruent trophic niches. Further, subdividing the dataset into three size classes revealed overlap to be higher in small frogs in both study sites. Our study underlines the importance of actively controlling X. laevis at sites with X. gilli in order to limit competition and predation, which is vital for conservation of the south-western Cape endemic.

Highlights

  • Diet and nutrition are widely recognised to represent crucial parameters for understanding life history, population fluctuation, as well as the impact of community modifications (Anderson, Haukos & Anderson, 1999; Dietl, Engels & Solé, 2009)

  • Previous studies have documented the presence of competition between Xenopus gilli and X. laevis, evidenced by a reduction in recruitment of X. gilli while X. laevis increases in abundance (De Villiers, De Kock & Measey, 2016; Picker & De Villiers, 1989)

  • For one aspect of this competition, we show a large dietary niche overlap of ∼50% in the Cape of Good Hope reserve and almost complete overlap (97%) in Kleinmond, suggesting a high level of competition for food resources between the two species

Read more

Summary

Introduction

Diet and nutrition are widely recognised to represent crucial parameters for understanding life history, population fluctuation, as well as the impact of community modifications (Anderson, Haukos & Anderson, 1999; Dietl, Engels & Solé, 2009). The investigation of species’ feeding ecology yields important insights into nutritional requirements as well as into niche segregation in sympatric species How to cite this article Vogt et al (2017), Competition and feeding ecology in two sympatric Xenopus species (Anura: Pipidae). Competition for resources in closely related species has been identified as a driver for speciation and niche segregation (Holt, 1977) which makes the assessment of their feeding ecology a powerful tool to explain interspecific competition (Amundsen et al, 2004). Interspecific competition between invasives that moved into the ranges of closely related native species is widely accepted to negatively affect populations of the latter (Blackburn et al, 2014)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.