Abstract

To diversify metal-organic frameworks (MOFs), multi-component MOFs constructed from more than two kinds of bridging ligand have been actively investigated due to the high degree of design freedom afforded by the combination of multiple ligands. Predicting the synthesis conditions for such MOFs requires an understanding of the crystallization mechanism, which has so far remained elusive. In this context, microflow systems are efficient tools for capturing non-equilibrium states as they facilitate precise and efficient mixing with reaction times that correspond to the distance from the mixing point, thus enabling reliable control of non-equilibrium crystallization processes. Herein, we prepared coordination polymers with pillared-layer structures and observed the intermediates in the syntheses with an in-situ measurement system that combines microflow reaction with UV/Vis and X-ray absorption fine-structure spectroscopies, thereby enabling their rapid nucleation to be monitored. Based on the results, a three-step nonclassical nucleation mechanism involving two kinds of intermediate is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.