Abstract
Data analysis methods for the study of treatments or exposures in relation to a clinical outcome in the presence of competing risks have a long history, often with inference targets that are hypothetical, thereby requiring strong assumptions for identifiability with available data. Here data analysis methods are considered that are based on single and higher dimensional marginal hazard rates, quantities that are identifiable under standard independent censoring assumptions. These lead naturally to joint survival function estimators for outcomes of interest, including competing risk outcomes, and provide the basis for addressing a variety of data analysis questions. These methods will be illustrated using simulations and Women's Health Initiative cohort and clinical trial data sets, and additional research needs will be described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.