Abstract
Modern competing risks analysis has 2 primary goals in clinical epidemiology as follows: (i) to maximize the clinician's knowledge of etiologic associations existing between potential predictor variables and various cause-specific outcomes via cause-specific hazard models, and (ii) to maximize the clinician's knowledge of noteworthy differences existing in cause-specific patient risk via cause-specific subdistribution hazard models (cumulative incidence functions [CIFs]). A perfect application exists in analyzing the following 4 distinct outcomes after listing for a deceased donor kidney transplant (DDKT): (i) receiving a DDKT, (ii) receiving a living donor kidney transplant (LDKT), (iii) waitlist removal due to patient mortality or a deteriorating medical condition, and (iv) waitlist removal due to other reasons. It is important to realize that obtaining a complete understanding of subdistribution hazard ratios (HRs) is simply not possible without first having knowledge of the multivariable relationships existing between the potential predictor variables and the cause-specific hazards (perspective #1), because the cause-specific hazards form the "building blocks" of CIFs. In addition, though we believe that a worthy and practical alternative to estimating the median waiting-time-to DDKT is to ask, "what is the conditional probability of the patient receiving a DDKT, given that he or she would not previously experience one of the competing events (known as the cause-specific conditional failure probability)," only an appropriate estimator of this conditional type of cumulative incidence should be used (perspective #2). One suggested estimator, the well-known "one minus Kaplan-Meier" approach (censoring competing events), simply does not represent any probability in the presence of competing risks and will almost always produce biased estimates (thus, it should never be used).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.