Abstract

Thermally activated chemical reactions are typically understood in terms of overcoming potential-energy barriers. However, standard rate theories break down in the presence of a conical intersection (CI) because these processes are inherently nonadiabatic, invalidating the Born-Oppenheimer approximation. Moreover, CIs give rise to intricate nuclear quantum effects such as tunnelling and the geometric phase, which are neglected by standard trajectory-based simulations and remain largely unexplored in complex molecular systems. We present new semiclassical transition-state theories based on an extension of golden-rule instanton theory to describe nonadiabatic tunnelling through CIs and thus provide an intuitive picture for the reaction mechanism. We apply the method in conjunction with first-principles electronic-structure calculations to the electron transfer in the bis(methylene)-adamantyl cation. Our study reveals a strong competition between heavy-atom tunnelling and geometric-phase effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.