Abstract

We study fermionic superfluidity in an ultracold Bose-Fermi mixture loaded into a square optical lattice subjected to a staggered flux. While the bosons form a Bose-Einstein condensate at very low temperature and weak interaction, the interacting fermions experience an additional long-ranged attractive interaction mediated by phonons in the bosonic condensate. This leads us to consider a generalized Hubbard model with on-site and nearest-neighbor attractive interactions, which give rise to two competing pairing channels. We use the Bardeen-Cooper-Schrieffer theory to determine the regimes where distinct fermionic superfluids are stabilized and find that the nonlocal pairing channel favors a superfluid state which breaks both the gauge and the lattice symmetries, similar to unconventional superconductivity occurring in some strongly correlated systems. Furthermore, the particular structure of the single-particle spectrum leads to unexpected consequences, for example, a dome-shaped superfluid region in the temperature versus filing fraction phase diagram, with a normal phase that contains much richer physics than a Fermi liquid. Notably, the relevant temperature regime and coupling strength are readily accessible in state of the art experiments with ultracold trapped atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.