Abstract

Van Hove points are special points in the energy dispersion, where the density of states exhibits analytic singularities. When a Van Hove point is close to the Fermi level, tendencies towards density wave orders, Pomeranchuk orders, and superconductivity can all be enhanced, often in more than one channel, leading to a competition between different orders and unconventional ground states. Here we consider the effects from higher-order Van Hove points, around which the dispersion is flatter than near a conventional Van Hove point, and the density of states has a power-law divergence. We argue that such points are present in intercalated graphene and other materials. We use an effective low-energy model for electrons near higher-order Van Hove points and analyze the competition between different ordering tendencies using an unbiased renormalization group approach. For purely repulsive interactions, we find that two key competitors are ferromagnetism and chiral superconductivity. For a small attractive exchange interaction, we find a new type of spin Pomeranchuk order, in which the spin order parameter winds around the Fermi surface. The supermetal state, predicted for a single higher-order Van Hove point, is an unstable fixed point in our case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.