Abstract
Strong electronic interactions and spin orbit coupling can be conducive for realizing novel broken symmetry phases supporting quasiparticles with nontrivial band topology. 227 pyrochlore iridates provide a suitable material platform for studying such emergent phenomena where both topology and competing orders play important roles. In contrast to the most members of this material class, which are thought to display "all-in all-out" (AIAO) type magnetically ordered low-temperature insulating ground states, Pr$_2$Ir$_2$O$_7$ remains metallic while exhibiting "spin ice" (SI) correlations at low temperatures. Additionally, this is the only 227 iridate compound, which exhibits a large anomalous Hall effect (AHE) along [1,1,1] direction below 1.5 K, without possessing any measurable magnetic moment. By focusing on the normal state of 227 iridates, described by a parabolic semimetal with quadratic band touching, we use renormalization group analysis, mean-field theory, and phenomenological Landau theory as three complementary methods to construct a global phase diagram in the presence of generic local interactions among itinerant electrons of Ir ions. While the global phase diagram supports several competing multipolar orders, motivated by the phenomenology of 227 iridates we particularly emphasize the competition between AIAO and SI orders and how it can cause a mixed phase with "three-in one-out" (3I1O) spin configurations. In terms of topological properties of Weyl quasiparticles of the 3I1O state, we provide an explanation for the magnitude and the direction of the observed AHE in Pr$_2$Ir$_2$O$_7$. We propose a strain induced enhancement of the onset temperature for AHE in thin films of Pr$_2$Ir$_2$O$_7$ and additional experiments for studying competing orders in the vicinity of the metal-insulator transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.