Abstract

Cyclic fatigue experiments in the high and very high cycle fatigue regimes have been performed on a Rene 88DT polycrystalline nickel-based superalloy. The microstructural configurations that favor early strain localization and fatigue crack initiation at high temperature from 400 °C to 650 °C have been investigated. Competing failure modes are observed in the high to the very high cycle fatigue regime. Fatigue cracks initiate from non-metallic inclusions and from intrinsic internal microstructural features. Interestingly, as stresses are reduced into the very high cycle regime, there is a transition to initiation only at crystallographic facets. At higher stress in the high cycle fatigue regime, a significant fraction of specimens initiate cracks at non-metallic inclusions. This transition is analyzed with regard to microstructural features that favor strain localization and accumulate damage early during cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.