Abstract
The structural stability and mechanical properties of sputter-deposited Zr/Nb nanoscale multilayers subjected to Si-ion irradiation were investigated in relation to the individual layer thickness. The interface density distribution played a major role on the nature and amount of accumulated radiation damage. The multilayer with a smaller periodicity experienced a significantly higher atomic-scale disorder and radiation hardening compared to the multilayer with thicker individual layers. In the latter case, an enhanced radiation damage tolerance was achieved due to the balance between competing deformation mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.