Abstract

Fatigue cracks may initiate around non-metallic inclusions via particle fracture, particle decohesion and slip-driven nucleation. Cohesive zone techniques within microstructurally faithful crystal plasticity modelling validated by micromechanical experiments (HR-DIC and HR-EBSD) are employed to investigate these nucleation phenomena. Particle fracture and decohesion lead to stress redistribution which influences subsequent energy storage driving slip-driven fatigue crack nucleation. Particle fracture and decohesion strengths were determined and using a stored energy criterion, the number of cycles to initiation of the fatigue microcrack was predicted. A threshold applied stress below which decohesion and fracture do not occur was obtained, thus modestly increasing fatigue life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.