Abstract

Sn-phthalocyanine adsorbs on Ag(111) in a physisorbed or a chemisorbed configuration. Both structures are contacted with the tip of a combined scanning tunneling and atomic force microscope. The tunneling conductances of both configurations exhibit similar exponential variations with the tip-molecule distance. The short-range forces, however, display nontrivial distance dependencies. First-principles calculations reproduce the experimental results. Both attractive and repulsive interactions occur between the tip and different parts of the molecule due to a combination of bond formation and electrostatic interactions with the tip electric dipole. Consequently, deformations occur and the force varies in the resulting unexpected fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.