Abstract
Abstract Plants of winter wheat (Triticum aestivum L. cv. Starke II) were grown for seven days in split‐root chambers containing nutrient solutions with various copper chloride (CuCl2) concentrations [0.5/0.5 (controls), 0.5/2, 0.5/5, 0.5/7 and 0.5/10 μM]. At harvest (day 11), shoot dry weights were about the same in the different copper (Cu) treatments. Dry weights of the root parts exposed to 2–10 μM Cu (Cu‐fed) decreased while they increased for the control roots. A Cu exposure of 2–10 μM severely retarded lateral root initiation and average lateral root length. Average seminal root length was also reduced. The control roots compensated for the retarded growth of the Cu‐fed roots by increasing chiefly in lateral root number, but their average length remained similiar. Phosphorus (P) concentration decreased gradually in all determined plant parts (shoots, Cu‐control and Cu‐fed roots) with increased external Cu concentration. The potassium (K) concentration in the shoots was similarly affected, but it did not decrease in the Cu‐fed roots until the external Cu concentration reached 10 μM. The Cu concentration in the Cu‐fed roots increased proportionally to the external Cu concentration, but Cu was not exported to the other plant parts. The reasons for changes in root geometry and nutrient balance are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.