Abstract

Early in pancreatic development, epithelial cells of pancreatic buds function as primary multipotent progenitor cells (1°MPC) that specify all three pancreatic cell lineages, i.e., endocrine, acinar and duct. Bipotent "Trunk" progenitors derived from 1°MPC are implicated in directly regulating the specification of endocrine progenitors. It is unclear if this specification process is initiated in the 1°MPC where some 1°MPC become competent for later specification of endocrine progenitors. Previously we reported that in Pdx1 tTA/+ ;tetO MafA (bigenic) mice inducing expression of transcription factor MafA in Pdx1-expressing (Pdx1+) cells throughout embryonic development inhibited the proliferation and differentiation of 1°MPC cells, resulting in reduced pancreatic mass and endocrine cells by embryonic day (E) 17.5. Induction of the transgene only until E12.5 in Pdx1+ 1°MPC was sufficient for this inhibition of endocrine cells and pancreatic mass at E17.5. However, by birth (P0), as we now report, such bigenic pups had significantly increased pancreatic and endocrine volumes with endocrine clusters containing all pancreatic endocrine cell types. The increase in endocrine cells resulted from a higher proliferation of tubular epithelial cells expressing the progenitor marker Glut2 in E17.5 bigenic embryos and increased number of Neurog3-expressing cells at E19.5. A BrdU-labeling study demonstrated that inhibiting proliferation of 1°MPC by forced MafA-expression did not lead to retention of those progenitors in E17.5 tubular epithelium. Our data suggest that the forced MafA expression in the 1°MPC inhibits their competency to specify endocrine progenitors only until E17.5, and after that compensatory proliferation of tubular epithelium gives rise to a distinct pool of endocrine progenitors. Thus, these bigenic mice provide a novel way to characterize the competency of 1°MPC for their ability to specify endocrine progenitors, a critical limitation in our understanding of endocrine differentiation.

Highlights

  • In pancreatic development, epithelial cells of pancreatic buds function as primary multipotent progenitor cells (1°MPC) and give rise to all three pancreatic cell lineages i.e, endocrine, acinar and duct [1,2,3]

  • Since cells in the embryonic Trunk/tubular epithelium are primarily responsible for the specification of pancreatic endocrine cells, we first examined whether the inhibitory effects of MafAMyc expression on endocrine differentiation of 1°MPCs persisted in E17.5 pancreas

  • Our results demonstrate that the ability to induce Neurog3 expression during the secondary transition is committed in the 1°MPC before E12.5 and that specification of endocrine progenitors from the tubular epithelium is likely regulated by distinct mechanisms during and after the secondary transition

Read more

Summary

Introduction

Epithelial cells of pancreatic buds function as primary multipotent progenitor cells (1°MPC) and give rise to all three pancreatic cell lineages i.e, endocrine, acinar and duct [1,2,3]. The size of the 1°MPC pool is thought to determine the pancreatic size, with the pancreas lacking a compensatory response for restoring lost pancreatic cell types after a reduction in progenitor pool [5]. This schema suggests that the specification of endocrine, acinar and ductal progenitor fate was committed in the 1°MPCs, and in case of endocrine cells, much before the increase in Neurog3+ endocrine progenitors during the secondary transition. A better understanding of these early steps of endocrine differentiation should enhance our ability to convert pancreatic progenitors into endocrine progenitors and increase the efficiency of β-cell generation from stem/progenitor cells

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.