Abstract

BackgroundThe signals that determine the specificity and efficiency of splicing are multiple and complex, and are not fully understood. Among other factors, the relative contributions of different mechanisms appear to depend on intron size inasmuch as long introns might hinder the activity of the spliceosome through interference with the proper positioning of the intron-exon junctions. Indeed, it has been shown that the information content of splice sites positively correlates with intron length in the nematode, Drosophila, and fungi. We explored the connections between the length of vertebrate introns, the strength of splice sites, exonic splicing signals, and evolution of flanking exons.ResultsA compensatory relationship is shown to exist between different types of signals, namely, the splice sites and the exonic splicing enhancers (ESEs). In the range of relatively short introns (approximately, < 1.5 kilobases in length), the enhancement of the splicing signals for longer introns was manifest in the increased concentration of ESEs. In contrast, for longer introns, this effect was not detectable, and instead, an increase in the strength of the donor and acceptor splice sites was observed. Conceivably, accumulation of A-rich ESE motifs beyond a certain limit is incompatible with functional constraints operating at the level of protein sequence evolution, which leads to compensation in the form of evolution of the splice sites themselves toward greater strength. In addition, however, a correlation between sequence conservation in the exon ends and intron length, particularly, in synonymous positions, was observed throughout the entire length range of introns. Thus, splicing signals other than the currently defined ESEs, i.e., potential new classes of ESEs, might exist in exon sequences, particularly, those that flank long introns.ConclusionSeveral weak but statistically significant correlations were observed between vertebrate intron length, splice site strength, and potential exonic splicing signals. Taken together, these findings attest to a compensatory relationship between splice sites and exonic splicing signals, depending on intron length.

Highlights

  • The signals that determine the specificity and efficiency of splicing are multiple and complex, and are not fully understood

  • The CAG|G consensus sequence preceded by a polypyrimidine tract is typical of the acceptor splice site which is recognized by the splicing factor U2AF [9]

  • Long introns have stronger flanking splice sites than short introns We first tested the hypothesis that long introns are associated with strong flanking splice sites in mammalian genomes

Read more

Summary

Introduction

The signals that determine the specificity and efficiency of splicing are multiple and complex, and are not fully understood. BMC Genomics 2006, 7:311 http://www.biomedcentral.com/1471-2164/7/311 splicing, and this recognition depends on an hierarchy of signals of varying specificity that are located both in the intron and in the exon and interact with different parts of the spliceosomal complex. A consensus sequence ((A/C)AG|GU(A/G)AGU in vertebrates, the first two nucleotides of the intron are underlined) at the donor splice site is complementary to the 5' end of U1 small nuclear (sn)RNA, and the interaction between the donor site and U1 is thought to be the major requirement for splicing [6,7,8]. The CAG|G consensus sequence (the last two nucleotides of the intron are underlined) preceded by a polypyrimidine tract is typical of the acceptor splice site which is recognized by the splicing factor U2AF [9]. The branch point or, more precisely, the branch site is located upstream of the polypyrimidine tract preceding the acceptor site and consists of an A residue embedded in a distinct motif; this site is recognized by the U2 RNP and is involved in the formation of the lariat splicing intermediate [9,10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call