Abstract

Fatigue refers to changes in objective performance and subjective effort induced by continuous task performance. We examined the neural underpinnings of cognitive fatigue in humans using a prolonged continuous performance task and high-density electroencephalography with the goal of determining whether compensatory processes exist to maintain performance in the face of fatigue. We identified brain activity demonstrating an inverted U-shaped time-on-task profile. This brain activity showed features consistent with a compensatory role including: peaking between 60 and 100 min into the task, a positive association with behavioral performance only during this interval, and accelerated performance decline following its peak. These findings may be relevant to understanding individual differences in cognitive fatigue and developing interventions for clinical conditions afflicted by fatigue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call