Abstract
AbstractTestosterone and dihydrotestosterone (DHT) are essential for male development and fertility. In the canonical androgen production pathway, testosterone is produced in the testis by HSD17B3; however, adult male Hsd17b3 knockout (KO) mice continue to produce androgens and are fertile, indicating compensatory mechanisms exist. A second, alternate pathway produces DHT from precursors other than testosterone via 5α‐reductase (SRD5A) activity. We hypothesized that the alternate pathway contributes to androgen bioactivity in Hsd17b3 KO mice. To investigate contributions arising from and interactions between the canonical and alternate pathways, we pharmacologically inhibited SRD5A and ablated Srd5a1 (the predominant SRD5A in the testis) on the background of Hsd17b3 KO mice. Mice with perturbation of either the canonical or both pathways exhibited increased LH, testicular steroidogenic enzyme expression, and normal reproductive tracts and fertility. In the circulation, alternate pathway steroids were increased in the absence of HSD17B3 but were reduced by co‐inhibition of SRD5A1. Mice with perturbations of both pathways produced normal basal levels of intratesticular testosterone, suggesting the action of other unidentified hydroxysteroid dehydrogenase(s). Strikingly, testicular expression of another SRD5A enzyme, Srd5a2, was markedly increased in the absence of Hsd17b3, suggesting a compensatory increase in SRD5A2 to maintain androgen bioactivity during HSD17B3 deficiency. Finally, we observed elevated circulating concentrations of the 11‐keto‐derivative of DHT, suggesting compensatory extra‐gonadal induction of bioactive 11‐keto androgen production. Taken together, we conclude that, in the absence of the canonical pathway of androgen production, multiple intra‐ and extra‐gonadal mechanisms cooperate to maintain testosterone and DHT production, supporting male development and fertility.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.