Abstract

The current study investigated the compensatory load redistribution due to osteoarthritis of the elbow joint using ground reaction forces of all four legs, simultaneously measured on a treadmill with integrated force plates. Three groups of dogs were used: the first group was clinically sound; the second group suffered from a naturally occurring osteoarthritis of the elbow joint, and a reversible lameness was induced in the third group. The naturally occurring osteoarthritis resulted in a compensatory gait pattern to reduce the stress on the affected limb. The load was reduced on the lame limb and increased on the contralateral hindlimb. The symmetry index indicated a weight-shift to the contralateral forelimb and diagonal hindlimb, which resulted in a more balanced weight distribution than in normal dogs. Dogs with induced lameness showed comparable but less pronounced alterations. These results suggested that forelimb lameness could lead to overload on non-affected extremities and the vertebral spine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.