Abstract
Influenza viruses routinely acquire mutations in antigenic sites on the globular head of the hemagglutinin (HA) protein. Since these antigenic sites are near the receptor binding pocket of HA, many antigenic mutations simultaneously alter the receptor binding properties of HA. We previously reported that a K165E mutation in the Sa antigenic site of A/Puerto Rico/8/34 (PR8) HA is associated with secondary neuraminidase (NA) mutations that decrease NA activity. Here, using reverse genetics, we show that the K165E HA mutation dramatically decreases HA binding to sialic acid receptors on cell surfaces. We sequentially passaged reverse-genetics-derived PR8 viruses with the K165E antigenic HA mutation in fertilized chicken eggs, and to our surprise, viruses with secondary NA mutations did not emerge. Instead, viruses with secondary HA mutations emerged in 3 independent passaging experiments, and each of these mutations increased HA binding to sialic acid receptors. Importantly, these compensatory HA mutations were located in the Ca antigenic site and prevented binding of Ca-specific monoclonal antibodies. Taken together, these data indicate that HA antigenic mutations that alter receptor binding avidity can be compensated for by secondary HA or NA mutations. Antigenic diversification of influenza viruses can therefore occur irrespective of direct antibody pressure, since compensatory HA mutations can be located in distinct antibody binding sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.