Abstract

The paper deals with a relevant problem of shipbuilding, i.e. calculation of free and forced vibrations of pipeline compensatory bellows. These devices are used to reduce the vibration load caused by ship power machines. When analyzing the vibrations of the compensatory bellows, it is necessary to take into account the liquid contained in the bellows. In this work, the design model of the bellows is represented by a corrugated elastic shell as a material surface with five degrees of freedom. A variant of the classical theory of shells, built on the basis of Lagrangian mechanics, is used. The influence of the liquid is taken into account by two models. First, the liquid is considered to be ideal and incompressible and is considered through the attached mass to the shell. The shell is replaced by a cylindrical surface with a radius in the middle line of the corrugation. To account for the influence of the frequency of bellows oscillations on the attached inertia of the liquid in the calculation we also used the acoustic approximation; and derived a formula for a generalized attached mass of the ideal compressible liquid. The equations of the bellows oscillations under the periodic loading are obtained. The problem has been solved by the finite difference method. The values of natural frequencies of free vibrations are obtained for the compensatory bellows from the corrosion-resistant heat-resistant steel. It is shown that by taking account of the liquid, we significantly change the natural frequencies of the bellows. With high-frequency vibrations it is necessary to take into account the compressibility of the liquid. The problem of the forced vibrations of the bellows caused by a displacement of its end face by the harmonic law is solved. The internal forces and moments are determined, as well as occurring stresses by Mises criterion in the bellows. We found the critical value of the end face displacement at a frequency of 50 Hz, at which the bellows goes into a plastic state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.