Abstract

To measure the intensity of flash X-ray sources directly, a novel scintillation detector with a fast time response and flat energy response is developed by combining film scintillators of doped ZnO crystal and fast organic scintillator together. Through compensation design, the dual-scintillator detector (DSD) achieved a flat energy response to X-rays from tens of keV to several MeV, and sub-nanosecond time response by coupling to ultrafast photo-electronic devices. A prototype detector was fabricated according to the theoretical design; it employed ZnO:In and EJ228 with thicknesses of 0.3 mm and 0.1 mm, respectively. The energy response of this detector was tested on monoenergetic X-ray and γ-ray sources. The detector performs very well with a sensitivity fluctuation below 5% for 8 discrete energy points within the 40-250 keV energy region and for other energies of 662 keV and 1.25 MeV as well, showing good accordance with the theoretical design. Additionally, the detector works properly for the application to the flash X-ray radiation field absolute intensity measurement. This DSD may be very useful for the diagnosis of time-resolved dynamic physical processes of flash X-ray sources without knowing the exact energy spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call