Abstract

Dynamic Voltage Restorer (DVR) restores the distribution system load voltage to a nominal balanced sinusoidal voltage, when the source voltage has distortions, sag/swell and unbalances. DVR has to inject a required amount of Volt-Amperes (VA) into the system to maintain a nominal balanced sinusoidal voltage at the load. Keeping the cost effectiveness of DVR, it is desirable to have a minimum VA rating of the DVR, for a given system without compromising compensation capability. In this regard, a methodology has been proposed in this work to minimize VA rating of DVR. The optimal angle at which DVR voltage has to be injected in series to the line impedance so as to have minimum VA loading on DVR as well as the removal of phase jumps in the three-phases is computed by the Particle Swarm Optimization (PSO) technique. The proposed method is able to compensate voltage sags with phase jumps by keeping the DVR voltage and power ratings minimum, effectively. The proposed PSO methodology together with adaptive neuro–fuzzy inference system used to make the DVR work online with minimum VA loading. The proposed method has been validated through detailed simulation studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call