Abstract
Abstract. InSAR technique can measure the surface deformation with the accuracy of centimeter-level or even millimeter and therefore has been widely used in the deformation monitoring associated with earthquakes, volcanoes, and other geologic process. However, ionospheric irregularities can lead to the wavy fringes in the low frequency SAR interferograms, which disturb the actual information of geophysical processes and thus put severe limitations on ground deformations measurements. In this paper, an application of two common methods, the range split-spectrum and azimuth offset methods are exploited to estimate the contributions of the ionosphere, with the aim to correct ionospheric effects in interferograms. Based on the theoretical analysis and experiment, a performance analysis is conducted to evaluate the efficiency of these two methods. The result indicates that both methods can mitigate the ionospheric effect in SAR interferograms and the range split-spectrum method is more precise than the other one. However, it is also found that the range split-spectrum is easily contaminated by the noise, and the achievable accuracy of the azimuth offset method is limited by the ambiguous integral constant, especially with the strong azimuth variations induced by the ionosphere disturbance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.