Abstract

A current transformer (CT) is accurately modeled for representation of the CT saturation effects on digital protective relays. Simulation studies performed in the PSCAD/EMTDC platform are used to investigate the impacts of CT saturation on the current phasor estimation. A new algorithm is also proposed for detection and compensation of CT saturation effects, based on: a least error squares (LES) filter which estimates the phasor parameters of the CT secondary current; a novel saturation detection method which uses the output of the LES filter for saturation detection; and a new minimum estimation error tracking approach which enhances the precision of the phasor estimation. The proposed saturation detection/compensation algorithm is independent of the parameters of the CT, the burden, and the power system. The study results show that the proposed algorithm: 1) reconstructs the distorted current waveform, under dc and ac saturation conditions, with the required precision and speed and 2) performs satisfactorily under inductive burden and under deep and slight saturation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.