Abstract

Utilization of multiple input multiple output (MIMO) systems in radar and channel sounding has gained increased attention in recent years. Quite often, time-division multiplexing (TDM) is employed to realize orthogonal waveforms at the transmitter. Apart from its advantages, TDM has two severe drawbacks. First, motion-induced phase variations become indistinguishable from phase migration due to the signal's arrival direction. This is termed angle-Doppler coupling, which causes ambiguities in angle, and Doppler estimation. Second, the unambiguously resolvable Doppler, i.e., the Doppler bandwidth, is reduced. In this letter, a model-based estimation approach will be proposed, which compensates for angle-Doppler coupling, and restores the Doppler bandwidth. A data model for the MIMO observations is derived, which is exploited by a maximum likelihood estimator to infer angle, delay, and Doppler from the observations. The performance of the proposed approach will be testified by simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call