Abstract

One of the fundamental areas in high precision cutting is represented by the machine's thermal state monitoring. Understanding of this state gives significant information about the overall machine condition such as proper performance of cooling system as well as software compensation of machine's thermal deformation during manufacturing. This paper presents a method focused on compensation of machine's thermal deformation in spindle axis direction based on decomposition analysis. The machine decomposition is performed with the help of specially developed measuring frame, which is able to measure deformation of machine column, headstock, spindle and tool simultaneously. Compensation is than calculated as a sum of multinomial regression equations using temperature measurement. New placements of temperature measurement like spindle cooling liquid or workspace are used to improve the accuracy of this calculation. Decomposition process allows describing each machine part's thermal dynamic more precisely than the usual deformation curve usually used one deformation curve for the complete machine. The residual thermal deformation of the machine is considerably reduced with this cheap and effective strategy. The advantage is also in the simplicity of presented method which is clear and can be used also on older machines with slower control systems without strong computing power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.