Abstract

Abstract In case of 4-Rod-type RFQ’s the quadrupole electrodes are excited by a series of coupled RF oscillators. As the contact planes between both electrode pairs differ, there remains an oscillating electric potential along the beam axis. This results in remarkably high longitudinal field components between the electrode ends and the RFQ tank end walls. In contrast, the electrodes of a 4-Vane RFQ are equally charged to ± | V 0 ∕ 2 | and only feature a quadrupole on-axis field. The entrance gap fields were investigated to serve as a longitudinal prebuncher instead of causing additional longitudinal emittance growth. The effects of the entrance gap field have been validated in beam dynamics simulations. The exit fields have to be taken into consideration for a calculation of the exact RFQ output energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call