Abstract

A realistic wave optics simulation method has been developed to study how wavefront distortions originating from heat load deformations can be corrected using adaptive X-ray optics. Several planned soft X-ray and tender X-ray insertion-device beamlines in the Advanced Light Source upgrade rely on a common design principle. A flat, first mirror intercepts the white beam; vertical focusing is provided by a variable-line-space monochromator; and horizontal focusing comes from a single, pre-figured, adaptive mirror. A variety of scenarios to cope with thermal distortion in the first mirror are studied by finite-element analysis. The degradation of the intensity distribution at the focal plane is analyzed and the adaptive optics that correct it is modeled. The range of correctable wavefront errors across the operating range of the beamlines is reported in terms of mirror curvature and spatial frequencies. The software developed is a one-dimensional wavefront propagation package made availablein the OASYS suite, an adaptable, customizable and efficient beamline modeling platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.