Abstract

Mask blank defect is one of the most important factors that degrades the image quality of extreme ultraviolet (EUV) lithography system, and further leads to a yield lose. In order to compensate the amplitude and phase distortions caused by the EUV mask blank defects, this paper proposes an advanced algorithm to optimize the mask absorber pattern based on genetic algorithm. First, a successive approximation correction method is used to roughly compensate the effect of mask blank defect. Then, an advanced genetic algorithm is proposed to obtain higher efficiency and compensation accuracy, which uses an adaptive coding strategy and a fitness function considering normalized image log slope of lithography image. For illustration, the proposed method is verified based on rectangular contact patterns and complex pattern with different defects. The aerial images of optimized masks are evaluated by a commercial lithography simulator. It will show that the proposed method can mitigate the impact of mask defects, and improve the fidelity of lithography print image. The simulation results also demonstrate the higher convergence efficiency and mask manufacturability can be guaranteed by the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.