Abstract
Hollow metal waveguides feature well collimated beams and small losses across air gaps. This enables introduction of multiple optical beam splitters, or taps, along the waveguide to multicast signals from a source to multiple receivers. The splitters need to be of sufficient thickness to provide mechanical integrity and ease of handling. As a result, passing through the thickness leads to a beam walk-off. Walk-off dependence on the splitter thickness and its effect on the system optical efficiency are investigated. Two methods to compensate the walk-off are described: by offsetting the outgoing waveguide, and by introducing an additional symmetric optical element to shift the beam back to the original optical path. Both methods have been shown to effectively mitigate the walk-off effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.