Abstract
Many battery state of charge (SOC) estimation methods have been studied for decades; however, it is still difficult to precisely estimate SOC because it is nonlinear and affected by many factors, including the battery state and charge–discharge conditions. The extended Kalman filter (EKF) is generally used for SOC estimation, however its accuracy can decrease owing to the uncertain and inaccurate parameters of battery models and various factors with different time scales affecting the SOC. Herein, a SOC estimation method based on the EKF is proposed to obtain robust accuracy, in which the errors are compensated by a long short-term memory (LSTM) network. The proposed approach trains the errors of the EKF results, and the accurate SOC is estimated by applying calibration values corresponding to the condition of the battery and its load profiles with the help of LSTM. Furthermore, a multi-LSTM structure is implemented, and it adopts the ensemble average to guarantee estimation accuracy. SOC estimation with a root mean square error of less than 1% was found to be close to the actual SOC calculated by coulomb counting. Moreover, once the EKF model was established and the network trained, it was possible to predict the SOC online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.