Abstract

The presence of distributed-volume atmospheric aberrations or “deep turbulence” presents unique challenges for beam-control applications which look to sense and correct for disturbances found along the laser-propagation path. This paper explores the potential for branch-point-tolerant reconstruction algorithms and tiled-aperture architectures to correct for the branch cuts contained in the phase function due to deep-turbulence conditions. Using wave-optics simulations, the analysis aims to parameterize the fitting-error performance of tiled-aperture architectures operating in a null-seeking control loop with piston, tip, and tilt compensation of the individual optical beamlet trains. To evaluate fitting-error performance, the analysis plots normalized power in the bucket as a function of the Fried coherence diameter, the log-amplitude variance, and the number of subapertures for comparison purposes. Initial results show that tiled-aperture architectures with a large number of subapertures outperform filled-aperture architectures with continuous-face-sheet deformable mirrors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call