Abstract
In computer aided geometric design a polynomial is usually represented in Bernstein form. This paper presents a family of compensated algorithms to accurately evaluate a polynomial in Bernstein form with floating point coefficients. The principle is to apply error-free transformations to improve the traditional de Casteljau algorithm. At each stage of computation, round-off error is passed on to first order errors, then to second order errors, and so on. After the computation has been “filtered” (K−1) times via this process, the resulting output is as accurate as the de Casteljau algorithm performed in K times the working precision. Forward error analysis and numerical experiments illustrate the accuracy of this family of algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.