Abstract
This article addresses Neumann boundary value interior problem of Stokes equations with circular boundary. By using natural boundary element method, the Stokes interior problem is reduced into an equivalent natural integral equation with a hyper-singular kernel, which is viewed as Hadamard finite part. Based on trigonometric wavelet functions, the compatible wavelet space is constructed so that it can serve as Galerkin trial function space. In proposed compatible wavelet-Galerkin method, the simple and accurate computational formulae of the entries in stiffness matrix are obtained by singularity removal technique. It is also proved that the stiffness matrix is almost a block diagonal matrix, and its diagonal sub-blocks all are both symmetric and circulant submatrices. These good properties indicate that a 2 J+3 × 2 J+3 stiffness matrix can be determined only by its 2 J + 3J + 1 entries. It greatly decreases the computational complexity. Some error estimates for the compatible wavelet-Galerkin projection solutions are established. Finally, several numerical examples are given to demonstrate the validity of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.