Abstract

Finding distortion-minimizing homeomorphisms between surfaces of arbitrary genus is a fundamental task in computer graphics and geometry processing. We propose a simple method utilizing intrinsic triangulations, operating directly on the original surfaces without going through any intermediate domains such as a plane or a sphere. Given two models A and B as triangle meshes, our algorithm constructs a Compatible Intrinsic Triangulation (CIT), a pair of intrinsic triangulations over A and B with full correspondences in their vertices, edges and faces. Such a tessellation allows us to establish consistent images of edges and faces of A's input mesh over B (and vice versa) by tracing piecewise-geodesic paths over A and B. Our algorithm for constructing CITs, primarily consisting of carefully designed edge flipping schemes, is empirical in nature without any guarantee of success, but turns out to be robust enough to be used within a similar second-order optimization framework as was used previously in the literature. The utility of our method is demonstrated through comparisons and evaluation on a standard benchmark dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.